GIS-Based Land Capability for Settlements Area in Piyungan, Yogyakarta

  • Januar Aziz Zaenurrohman Department of Geological Engineering, Universitas Jenderal Soedirman, Purwokerto, Indonesia
  • I Gde Budi Indrawan Department of Geological Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Indra Permanajati Department of Geological Engineering, Universitas Jenderal Soedirman, Purwokerto, Indonesia
Keywords: Settlement, engineering geology, bearing capacity, land capability zone, Yogyakarta

Abstract

The development of the areas for settlement needs to be performed to meet the needs of the land. Research on the characteristics of engineering geology as a basis for determining the capability of land for settlements. The bearing capacity of rocks is based on the Geological Strength Index (GSI) rock mass classification, while the bearing capacity of soils is based on Dynamic Cone Penetration (DCP). Bearing capacity of the research areas, consisting of: sandstone 135 tons/m2, lapilli tuff 135 tons/m2, tuffaceous sandstone 45 tons/m2, andesite breccia 45 tons/m2, sand deposits 11-35 tons/m2, and silty clay deposits 6,5-8,6 tons/m2 with a liquid limit of 27-32,3%, and plastic index of 7,25-10,2%. Zoning of land capability is conducted using the Analytical Hierarchy Process (AHP) with criteria of bearing capacity, excavatability assessment, depth of groundwater level, slope, and geological disaster vulnerability. The land capability zone in the research areas consists of a high capability zone with an area of 33%, medium capability zone of 45%, and a low capability zone of 22% of the total research area in Piyungan, Yogyakarta.

Downloads

Download data is not yet available.

References

[1] Badan Pusat Statistik D.I. Yogyakarta. D. I. Yogyakarta Dalam Angka Tahun 2013. Badan Pusat Statistik Provinsi D I Yogyakarta. Yogyakarta, 2014.

[2] van Bemmelen, R.W. The Geology of Indonesia. Martinus Nijhoff The Hague, 1949.

[3] Bronto, S. and Hartono, H.G. Panduan Ekskursi Geologi Kuliah Lapangan 2. STTNAS: Yogyakarta, 2001.

[4] Rahardjo, W., Sukandarrumidi, and Rosidi, H.M.D. Peta Geologi Lembar Yogyakarta, Jawa, Skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi. Bandung, 1995.

[5] Surono, Toha, B., and Sudarno, I. Peta Geologi Lembar Surakarta- Giritontro, Jawa, Skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi. Bandung, 1992.

[6] Bronto, S., Mulyaningsih, S., Hartono, H.G., and Astuti, B. Gunung Api Purba Watuadeg: Sumber erupsi dan posisi stratigrafi. Jurnal Geologi Indonesia, 2008.

[7] Sugiyanto and Hermawan. Peta Geologi Teknik Daerah Yogyakarta, Klaten dan Sekitarnya. Pusat Lingkungan Geologi. Bandung, 2006.

[8] Dearman, W.R. Engineering Geological Mapping. Butterworth-Heinemann Ltd. Oxford: United Kingdom, 1991.

[9] Hoek, E., Strength of Rock, and Rock Masses, ISRM News Journal, 2(2), 4-16., 1994.

[10] Amini, Farshad. Potential Applications of Dynamic and Static Cone Penetrometers in MDOT Pavement Design and Construction. Department of Civil Engineering, Jackson State University, 2003.

[11] Zaenurrohman, J.A., and Permanajati, I. Zona Kerentanan Gerakan Tanah (Longsor) Di Daerah Kedungbanteng Menggunakan Analytical Hierarchy Process (AHP). Prosiding Seminar Nasional dan Call for Papers. LPPM Universitas Jenderal Soedirman Vol. 9 No. 1, 2019.

[12] Saaty, T. L. The Analytic Hierarchy Process. McGraw-Hill, New York. (This book has been translated into Chinese by S. Xu et al.; information is available from them at the Inst. of Systems Engineering. Tianjin Univ., Tianjin, China.) (A translation into Russian by R. Vachnadze is currently underway), 1980.

[13] Zaenurrohman, J.A., Irawan, J.F., Permanajati, I., and Iswahyudi, S. Tata Kelola Taman Nasional Meru Betiri (TNMB) Berdasarkan Aspek Geologi Lingkungan. Jurnal Tanah dan Sumberdaya Lahan. Universitas Brawijaya Vol. 7 No. 1, 2020.

[14] Munsell, A.H.. Munsell Soil Color Book. Grand Rapids (US): X-Rite, 2009.

[15] Pettifer, G.S. and Fookes, P.G. A Revision of The Graphical Method For Assessing The Excavatability of Rock. Quarterly Journal of Engineering Geology 27, 1994, pp. 145–164.

[16] Marinos, P. and Hoek, E. Estimating The Mechanical Properties Of Heterogeneous Rock Masses Such As Flysh. Bulletin of Engineering Geology and the Environment 60, 2001, pp. 85-92.

[17] Bieniawski, Z.T. Engineering Rock Mass Classifications. John Wiley and Sons. New York, 1989.

[18] Das, M.B. Advanced Soil Mechanics. Hemisphere Publishing Corporation and McGraw-Hill. New York: USA, 1983.

[19] Ismail, K. and Pramumijoyo, S. Karakteristik Sesar Kali Petir dan Sekitarnya Kecamatan Prambanan, Kabupaten Sleman. Daerah Istimewa Yogyakara. Procedding Seminar Nasional Kebumian Ke-8, Yogyakarta, 2015.

[20] Kristanto, W.A.D. Karakteristik Geologi Teknik Daerah Prambanan dan Sekitarnya, Kecamatan Prambanan, Daerah Istimewa Yogyakarta Jurnal Technology of Civil, Electrical, Mechanical, Geology, Mining, and Urban Design Vol. 3 No. 2, 2018.

[21] Badan Perencanaan dan Pembangunan Daerah D.I. Yogyakarta. Potensi Bencana Geologi Provinsi D.I. Yogyakarta. Yogyakarta, 2008.

[22] Phyu, H.T., Hendrayana, H., Indrawan, I.G.B., and Kamai, T. Simulation of Kalirejo Roadside Slope based on Altered Andesite Characters, Kulon Progo Regency, Indonesia. Journal of Applied Geology. vol. 5(2), 2020, pp. 101–112.

[23] Montello, D. R. A new framework for understanding the acquistion of spatial knowledge in large-scale environments. In Spatial and Temporal Reasoning in Geographic Information Systems. M. J. Egenhofer and R. G. Golledge, Eds. Oxford University Press. New York 1998. ch. 11, 1983, pp. 143–154.

[24] Utami, T.E. and Sutarjan, W. Rancangan Aplikasi SIG untuk Pembuatan Peta Zona Kemampuan Geologi Teknik: Studi Kasus Daerah Jember Skala 1:100.000. Buletin Geologi Tata Lingkungan V.11 No. 4, 2000, pp.179-184.

[25] BAKOSURTANAL. Rupa Bumi Indonesia, Badan Koordinasi Survey dan Pemetaan Nasional. Jakarta, 2001.
Published
2023-06-14
Abstract viewed = 91 times
PDF downloaded = 64 times